Alphamin Resources Corp.
Continued in the Republic of Mauritius
Date of incorporation: 12 August 1981
Corporation number: C125884 C1/GBL
TSX-V share code: AFM
JSE share code: APH
ISIN: MU0456S00006

ALPHAMIN REPORTS HIGH GRADE EXPLORATION ASSAY RESULTS

February 1, 2022 - Alphamin Resources Corp. (AFM:TSXV, APH:JSE AltX, "Alphamin" or the "Company"), a producer of 4% of the world's mined tin ${ }^{1}$ from its high-grade operation in the Democratic Republic of Congo, is pleased to announce drill results from its Bisie Tin Complex.

HIGHLIGHTS

> Mpama South high-grade assay results ${ }^{2}$ received, including BGH079 which is the best drillhole assayed to date at Mpama South by contained tin:
> BGH079: 15.6 metres @ 5.00% Sn from 290.2 metres, including 10.0 metres @ 6.1% from 291.1 metres, and
> BGH079: 9.0 metres @ 5.63% Sn from 316.9 metres
> BGH077: 4.8 metres @ 4.68\% Sn from 335.3 metres and 11.4 metres @ 2.23\% Sn from 318.8 metres
> Mpama North high-grade assay results ${ }^{2}$ received, including MND011 which is the second best drillhole assayed to date at Mpama North by contained tin:
> MND011: 19.6 metres @ 17.16\% Sn from 419.3 metres, including 14.5 metres @ 23.0\%
> Visual cassiterite mineralised intercepts at Mpama South are now within 85 metres from the Mpama North mine orebody
> Finalising completion of the Maiden Mineral Resource estimation on Mpama South

[^0]
Mpama South Update and Forthcoming Completion of a Maiden Mineral Resource

Mpama South is the high-grade tin deposit adjoining the southern end of Alphamin's operating Mpama North mine. By year end 2021, 24,235 metres of drilling has been completed in 89 drillholes. Including the original sixteen 2014/15 drillholes, $23,109 \mathrm{~m}$ and 79 drillholes will form the basis of the Maiden Mineral Resource estimation exercise which is nearing completion, results expected to be announced in February 2022. Subsequent Mineral Resource updates are expected to be announced throughout 2022 as Alphamin plans to aggressively drill the deposit which is open in multiple directions.

Selected significant intercepts from the most recently received batch of drillhole assays, including the best intercept to date at Mpama South in BGH079 in terms of contained metal (Sn\% x metres), are listed below as apparent widths:

- BGH079: 15.6 metres @ 5.00\% Sn from 290.2 metres, including 10.0 metres @ 6.1\% from 291.1 metres, and
- BGH079: 9.0 metres @ 5.63\% Sn from 316.9 metres
- BGH077: 4.8 metres @ 4.68\% Sn from 335.3 metres and 11.4 metres @ 2.23\% Sn from 318.8 metres
- BGH084: 26.0 metres @ 2.71\% Sn from 280.3 metres
- BGH086: 6.1 metres @ 2.75% Sn from 275.35 metres

The success of the Mpama South drilling is such that the zone of high-grade mineralisation has grown substantially throughout 2021. Visual cassiterite intercepts at Mpama South are now within 85 metres of Mpama North mine and are in the export and assay pipeline already. Figure 1 demonstrates the location of received assays, awaited assays on visual cassiterite intercepts and proximity of these to the Mpama North Mine based on drilling to date. The complete list of assayed intercepts to date is shown in Appendix 2.

Figure 1: Mpama South Assays to-date

Mpama North Update

Drilling commenced on Mpama North in July 2021 on the Mpama North Deeps target. The first drillholes showed increased structural complexity associated with a northeast-southwest crosscutting fault which had constrained the Deeps target to smaller extents than originally planned. After revising the model and drilling approach, several high-grade intercepts of visual cassiterite were intersected east of the fault subsequently as well as west of the fault in the shallower Oso target. Drilling continues in 2022 to close out what is left of the Deeps target, the shallow Oso target as well as the down Dip eastern side of Mpama North which still remains open (Figure 2).

A particularly significant new intercept from the first batch of drillhole assays on Mpama North is listed below as an apparent width. The intercept is the second best drillhole at Mpama North drilled to date in terms of contained metal (Sn\% x metres):-

- MND011: 19.6 metres @ 17.16\% Sn from 419.3 metres, including 14.5 metres @ 23.0\% The complete list of assayed intercepts to date is shown in Appendix 2.

Figure 2: Mpama North Drill Targets

Source: Alphamin 2022

Bisie Ridge Exploration Drilling

The Bisie Ridge is a 13 km long ridge hosting both the Mpama North and Mpama South deposits. Only a fraction ($\sim 20 \%$) of this ridge has been intensively drill tested to date. The full length of the ridge has been the subject of a follow up geochemical investigation in 2021 confirming tin and other base metal anomalies over the majority of its length. Six high priority drill areas have been identified in 2021 in conjunction with the Company's expert structural advisors TECT. With the goal of making new discoveries, the Company is pleased to announce that the first of these six targets commenced drill testing in January 2022.

Qualified Person

Mr Jeremy Witley, Pr. Sci. Nat., B.Sc. (Hons.) Mining Geology, M.Sc. (Eng.), is a qualified person (QP) as defined in National Instrument 43-101 and has reviewed and approved the scientific and technical information contained in this news release. He is a Principal Mineral Resource Consultant of The MSA Group (Pty.) Ltd., an independent technical consultant to the Company.

FOR MORE INFORMATION, PLEASE CONTACT:

Maritz Smith
CEO
Alphamin Resources Corp.
Tel: +230 2694166
E-mail: msmith@alphaminresources.com
JSE Sponsor
Nedbank Corporate and Investment Banking, a division of Nedbank Limited

CAUTION REGARDING FORWARD LOOKING STATEMENTS

Information in this news release that is not a statement of historical fact constitutes forwardlooking information. Forward-looking statements contained herein include, without limitation, statements relating to anticipated future exploration activities and outcomes and the timing and positive outcome of a future resource estimation for Mpama South. Forward-looking statements are based on assumptions management believes to be reasonable at the time such statements are made. There can be no assurance that such statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. Although Alphamin has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking statements, there may be other factors that cause results not to be as anticipated, estimated or intended. Factors that may cause actual results to differ materially from expected results described in forward-looking statements include, but are not limited to: uncertainties with respect to social, community and environmental impacts, uninterrupted access to required infrastructure, adverse political events, impacts of the global Covid-19 pandemic on mining as well as those risk factors set out in the Company's Management Discussion and Analysis and other disclosure documents available under the Company's profile at www.sedar.com. Forward-looking statements contained herein are made as of the date of this news release and Alphamin disclaims any obligation to update any forward-looking statements, whether as a result of new information, future events or results or otherwise, except as required by applicable securities laws.

Neither the TSX Venture Exchange nor its regulation services provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this news release.

Appendix 1: SAMPLE PREPARATION, ANALYSES AND QUALITY CONTROL AND QUALITY ASSURANCE (QAQC)

After receipt of diamond drill core from the drillers at the drill rig in marked core trays, core was transported to the Company's core shed by the site geologist for logging and sampling. After sample mark up, lithological and geotechnical logging and photography, the core was split longitudinally in half using a water-cooled rotating diamond blade core saw. The cut core was replaced into the core tray with the half to be sampled facing upward. Based on previous experience at Bisie with high density variability and at the qualified person's instruction (Mr J . Witley of MSA Group), specific gravity (SG) was performed exclusively on the half core that was to be sampled. The Archimedes method of weight in air vs weight in water was used on the whole length of the half core that was to be sampled and then replaced in the core trays.

Air dried samples were placed in pre-numbered sample bags together with pre-printed numbered sample tickets, which were cross-checked afterwards to prevent sample swaps. Sample bags were sealed using a plastic cable tie and then placed into poly-weave sacks which were in turn sealed with plastic cable ties. Each poly-weave sack was marked with a number and the sample numbers contained within, ready for delivery to the on-site Alphamin-Bisie laboratory for sample preparation.

At the laboratory, samples were first checked off against the submission list supplied and then weighed and oven dried for 2 hours at 105 degrees Celsius. The dried samples were crushed by jaw crusher to 75% passing 2 mm , from which a 250 g riffle split was taken. This 250 g split was pulverised in ring mills to 90% passing $75 \mu \mathrm{~m}$ from which a sample for analysis was taken. Samples were homogenised using a corner-to-corner methodology and two samples were taken from each pulp, one of 10 g for on-site laboratory assaying and another 150 g sample for export and independent accredited 3rd party laboratory assaying.

For the initial on-site laboratory assay, 10 grams of pulverised sample is mixed with 2 grams of binder before press pellet preparation at 20t/psi for 1 minute. Press pellets are analysed in a desktop Spectro Xepos XRF analyser, twelve at a time, for $\mathrm{Sn}, \mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Pb}$ and As along with a standard, duplicate and blank. The analytical method conducted on the pressed pellet has an expected 10% precision and an upper detection limit of $70,000 \mathrm{ppm}$ and lower detection limit of 500 ppm . Over-limit samples are titrated by wet chemistry with an upper limit validation of 70% Sn . The on-site laboratory assays are merely an exploration tool and were not used for reporting the exploration results, which are based solely on the ALS assays.

The 150 g sample is packaged in sealed paper sample envelopes and packed in a box for export in batches of approximately 500 samples and prepared for export authorisation with national authorities. Once authorisation is received, samples are air-couriered to ALS Group in Johannesburg South Africa, a subsidiary of ALS Limited, which is an independent commercial analytical facility. ALS operations are ISO 9001:2015 certificated and the Johannesburg office is ISO 17025 accredited for Chemical Analysis by SANAS (South African National Accreditation System, facility number T087), although the accreditation does not extend to the methods used for tin.

Received samples at ALS Johannesburg are checked off against the list of samples supplied and logged in the system. Quality Control is performed in the way of sieve tests every 50 samples and should a sample fail, the preceding 50 samples are ground in a ring mill pulveriser using a carbon steel ring set to 85% passing $75 \mu \mathrm{~m}$. Samples are analysed for tin using method code ME-XRF05
conducted on a pressed pellet with 10% precision and an upper limit of 5,000ppm. The over-limit tin samples are analysed as fused disks according to method ME-XRF15c, which makes use of pre-oxidation and decomposition by fusion with 12:22 lithium borate flux containing 20% Sodium Nitrate as an oxidizing agent, with an upper detection limit of 79% Sn.

Method code ME-ICP61 (HF, HNO3, HCIO4 and HCl leach with ICP-AES finish) is used for 33 elements including base metals. ME-OG62, a four-acid digestion, is used on ore grade samples for lead, zinc, copper and silver. Both methods are accredited by SANAS.

The program is designed to include a comprehensive analytical quality assurance and control routine comprising the systematic use of Company inserted standards, blanks and field duplicate samples, internal laboratory standards and analysis at an accredited laboratory. The pulps were accompanied by blind QAQC samples inserted into the sample stream by the Alphamin-Bisie geologists. These comprised blank samples, certified reference materials and pulp duplicates each at an insertion rate of approximately 5%.

The QAQC results demonstrate that the assay results are both accurate and precise with an insignificant amount of contamination (in the order of 10 pmm Sn on average) and negligible sampling errors. Further verification work is in progress by additional check assays by SGS South Africa (Pty) Ltd.

Appendix 2: SIGNIFICANT INTERCEPTS (0.5\% Sn lower threshold) ("BGH" holes refer to Mpama South; "MND" holes refer to Mpama North)

Hole	Easting	Northing	RL_m	Azi ${ }^{\circ}{ }^{\circ}$	Dip (${ }^{\circ}$)	From	To	Sn \%	$\begin{aligned} & \text { Width } \\ & (\mathrm{m})^{1} \\ & \hline \end{aligned}$	Sample Position		
	GPS	GPS								mid_x	mid_y	mid_z
BGH017	582535	9884822	732	55	-10	237.80	238.80	4.99	1.00	582,732	9,884,966	678.6
BGH018	582535	9884822	732	93	0	141.20	144.35	2.07	3.15	582,691	9,884,820	727.9
						145.75	151.00	0.76	5.25	582,696	9,884,820	727.9
BGH019	582535	9884822	732	85	-5	147.00	152.00	2.05	5.00	582,696	9,884,837	715.8
BGHO20	582535	9884822	732	84	-15	160.60	164.40	1.45	3.80	582,704	9,884,846	689.3
						169.30	171.10	5.42	1.80	582,711	9,884,846	687.7
BGH021	582535	9884822	732	93	-15	109.15	110.25	3.20	1.10	582,654	9,884,821	700.1
						164.60	167.32	3.29	2.72	582,708	9,884,818	687.6
BGH022	582554	9884785	732	90	0	75.00	80.53	3.99	5.53	582,633	9,884,784	729.3
						109.00	110.00	1.35	1.00	582,664	9,884,785	729.9
						119.22	122.10	2.22	2.88	582,676	9,884,785	730.1
BGH023	582535	9884822	732	75	-15	171.43	174.32	1.72	2.89	582,710	9,884,859	683.7
						175.85	178.00	1.09	2.15	582,714	9,884,860	683
BGH024	582554	9884785	732	103	-5	127.70	129.60	0.54	1.90	582,679	9,884,749	717.2
						137.95	142.00	1.13	4.05	582,690	9,884,746	716.2
BGH025	582535	9884822	732	55	-20	212.25	213.40	0.60	1.15	582,724	9,884,919	662.3
						218.00	221.45	2.29	3.45	582,731	9,884,921	660.7
						222.70	223.70	13.05	1.00	582,734	9,884,923	659.9
						228.00	234.80	2.73	6.80	582,741	9,884,926	658
BGH026	582554	9884785	732	113	-10	103.71	108.00	3.30	4.29	582,649	9,884,735	713.7
						134.80	136.45	3.72	1.65	582,676	9,884,722	708.6
						161.00	162.50	5.61	1.50	582,699	9,884,711	704.5
BGH030	582554	9884785	732	115	-20	110.00	111.40	7.24	1.40	582,655	9,884,753	692.2
						141.90	152.50	4.85	10.60	582,686	9,884,745	680
						158.00	161.20	3.61	3.20	582,699	9,884,742	675.3
						174.45	175.80	11.03	1.35	582,713	9,884,738	670.5
BGH032	582554	9884785	732	125	-20	177.00	178.72	1.70	1.72	582,692	9,884,684	671.3
						182.00	188.25	3.00	6.25	582,697	9,884,679	669.1
						190.25	193.00	0.95	2.75	582,702	9,884,676	667.2
						194.40	202.00	1.37	7.60	582,707	9,884,672	665.3
						203.50	208.00	2.67	4.50	582,713	9,884,668	663.2
BGH034	582554	9884785	732	115	-25	174.80	178.00	11.99	3.20	582,689	9,884,696	653.3
						195.70	200.00	1.21	4.30	582,706	9,884,686	644.8
						202.37	206.65	1.86	4.28	582,711	9,884,683	642.3
						208.00	213.30	1.40	5.30	582,716	9,884,680	640.1
						216.25	221.30	1.42	5.05	582,722	9,884,676	637.3
						225.65	231.00	0.70	5.35	582,730	9,884,671	634
BGH027	582544	9884822	732	68	-27	212.35	214.00	0.58	1.65	582,729	9,884,879	634
						226.00	229.30	1.32	3.30	582,741	9,884,883	628.4
						235.45	236.58	1.54	1.13	582,749	9,884,885	625.2
BGH028	582554	9884785	732	90	-10	125.00	126.00	1.72	1.00	582,676	9,884,772	700.9
						136.10	137.18	1.85	1.08	582,687	9,884,770	698.4
						140.28	142.00	1.03	1.72	582,691	9,884,770	697.4
						147.46	151.25	2.88	3.79	582,699	9,884,769	695.5
BGH029	582544	9884822	732	93	-25	126.00	128.35	4.66	2.35	582,663	9,884,826	678.5
						178.90	184.05	1.25	5.15	582,713	9,884,827	657.7
						193.70	196.05	3.95	2.35	582,726	9,884,827	653
BGH031	582544	9884822	732	75	-25	208.00	211.53	0.99	3.53	582,729	9,884,876	639.9
						219.40	222.38	1.16	2.98	582,739	9,884,879	636
BGH033	582544	9884822	732	60	-27	259.00	265.46	7.32	6.46	582,756	9,884,929	612.8
						268.53	270.52	1.02	1.99	582,762	9,884,931	610
BGH035	582554	9884785	732	90	-25	152.00	165.00	2.96	13.00	582,686	9,884,816	665
						171.00	173.60	1.47	2.60	582,703	9,884,815	657.4
						176.60	180.08	2.40	3.48	582,709	9,884,814	654.9
BGH036	582544	9884822	732	65	0	147.45	151.35	2.31	3.90	582,687	9,884,878	724.8
						156.63	160.65	0.93	4.02	582,696	9,884,881	724.7

BGH037	582554	9884785	732	105	-30	154.00	157.00	3.81	3.00	582,680	9,884,741	647.5
						194.60	197.55	1.54	2.95	582,712	9,884,730	626
						207.95	211.18	1.29	3.23	582,723	9,884,726	619.3
						216.25	220.15	2.79	3.90	582,730	9,884,723	615.1
						222.40	226.70	1.77	4.30	582,735	9,884,721	612.1
BGH038	582544	9884822	732	75	-30	151.70	154.60	5.22	2.90	582,677	9,884,851	654.3
						218.30	223.65	3.38	5.35	582,735	9,884,861	621.4
						226.70	231.50	1.95	4.80	582,743	9,884,862	617.6
BGH039	582554	9884785	732	100	-22	112.08	113.00	2.12	0.92	582665.1	9,884,755	687.6
						116.30	120.95	3.33	4.65	582,661	9,884,753	686.1
						145.00	166.00	2.20	21.00	582,696	9,884,744	674.2
						174.50	176.00	0.95	1.50	582,713	9,884,739	668.9
BGH040	582544	9884822	732	60	-30	232.00	233.00	0.95	1.00	582,725	9,884,922	618.2
						273.70	277.05	3.79	3.35	582,761	9,884,937	600
BGH041	582500	9884847	732	55	-25	340.00	344.50	3.03	4.50	582,807	9,885,002	599.5
BGH042	582544	9884822	732	60	-35	277.35	280.00	1.93	2.65	582,751	9,884,922	569.4
						308.50	312.00	0.62	3.50	582,776	9,884,932	552.6
						313.00	315.55	1.52	2.55	582,779	9,884,933	550.5
BGH043	582544	9884822	732	100	-10	102.50	104.15	2.69	1.65	582,644	9,884,808	709
						123.00	124.00	1.06	1.00	582,663	9,884,805	704.8
						163.64	167.00	2.82	3.36	582,704	9,884,798	696.7
BGH044	582500	9884847	710	70	-35	330.00	334.13	1.31	4.13	582,764	9,884,941	533.4
BGH045	582544	9884822	732	100	-20	120.65	121.75	31.55	1.10	582,656	9,884,806	687.4
						156.00	159.40	0.56	3.40	582,689	9,884,799	674.7
						176.70	183.62	3.24	6.92	582,708	9,884,795	668.1
BGH046	582544	9884822	732	100	-30	195.18	206.00	2.85	10.82	582,712	9,884,795	630.5
						212.53	215.18	1.90	2.65	582,723	9,884,793	623.7
						218.00	220.60	7.16	2.60	582,728	9,884,792	620.8
						225.00	226.00	4.36	1.00	582,733	9,884,791	617.7
BGH047	582565	9884535	718	60	0	121.58	124.57	0.91	2.99	582,653	9,884,879	739.2
						147.09	148.09	1.28	1.00	582,675	9,884,889	741.1
BGH048	582567	9884509	727	90	0	140.75	143.05	0.90	2.30	582,708	9,884,496	727.7
						146.53	148.00	0.74	1.47	582,713	9,884,495	728
BGH049	582565	9884535	718	65	-15	145.40	147.40	4.27	2.00	582,689	9,884,599	674.5
BGH050	582567	9884509	727	105	-5	160.00	161.38	1.06	1.38	582,722	9,884,469	711.7
BGH051	582565	9884535	718	40	0	134.80	137.00	2.23	2.20	582,662	9,884,630	712.3
						151.00	156.30	1.20	5.30	582,675	9,884,642	711.4
						164.18	169.45	3.95	5.27	582,685	9,884,651	710.8
						171.27	172.57	4.08	1.30	582,688	9,884,655	710.6
BGH052	582567	9884509	727	120	0	205.90	207.10	1.86	1.20	582,732	9,884,385	722.9
BGH053	582565	9884535	718	40	-15	173.73	176.93	9.58	3.20	582,685	9,884,653	669.2
						178.55	181.43	4.07	2.88	582,688	9,884,656	667.9
						192.41	196.86	3.28	4.45	582,698	9,884,666	664
						198.86	206.77	2.45	7.91	582,704	9,884,671	661.8
						207.53	209.50	5.04	1.97	582,708	9,884,675	660.3
						214.65	216.00	2.32	1.35	582,713	9,884,680	658.6
BGH054	No significant intercepts											
BGH055	582565	9884535	718	80	-15	145.00	146.00	0.62	1.00	582,705	9,884,549	682.7
BGH056	No significant intercepts											
BGH057	No significant intercepts											
BGH058	582565	9884510	727	95	-5	153.35	155.60	1.98	2.25	582,717.3	9,884,501.2	703.9
BGH059	582567	9884536	718	95	0	165.00	166.00	3.63	1.00	582,732.3	9,884,528.3	714.4
BGH060						No sign	cant inte	epts				
BGH061	582567	9884536	727	130	-10	157.57	159.19	1.22	1.62	582,719	9,884,525	677.7
BGH062	582567	9884537	718	95	-15	154.00	156.00	2.18	2.00	582,695	9,884,589	650.2
BGH063	582782	9884646	829	270	-70	186.25	194.37	0.82	8.12	582,719	9,884,661	650.5
						197.42	202.45	1.12	5.03	582,715	9,884,661	641.8
						205.00	209.05	0.83	4.05	582,712	9,884,661	635.4
						211.13	218.90	2.06	7.77	582,709	9,884,661	628.3
						220.40	222.55	0.86	2.15	582,706	9,884,661	622.5
						231.00	233.00	0.87	2.00	582,701	9,884,661	613

BGH064	582888	9884976	839	270	-50	220.80	222.60	0.63	1.80	582,746	9,884,976	668.9
BGH065	582913	9885057	819	270	-60	271.00	275.95	2.93	4.95	582,769	9,885,057	586.1
						291.56	292.56	1.70	1.00	582,759	9,885,057	570.9
BGH066	582888	9884976	839	270	-60	276.00	278.59	8.49	2.59	582,754	9,884,965	596.1
						300.00	301.00	1.78	1.00	582,742	9,884,965	576.6
BGH067	582913	9885057	819	270	-67	295.75	300.47	3.21	4.72	582,789	9,885,065	548.1
						303.00	304.62	1.56	1.62	582,786	9,885,065	543.1
						337.00	338.00	0.55	1.00	582,769	9,885,068	514.3
BGH068	582913	9885057	819	270	-50	247.00	248.20	2.10	1.20	582,749	9,885,051	633.1
						251.80	255.10	1.75	3.30	582,745	9,885,051	628.8
BGH069	582888	9884976	839	270	-70	321.80	324.73	3.84	2.93	582,779	9,884,962	534.7
BGH070	582913	9885057	819	270	-73	331.00	336.35	3.00	5.35	582,802	9,885,040	505.2
BGH071	No significant intercepts											
BGH072	582852	9884845	831	270	-67	274.60	279.70	2.70	5.10	582,749	9,884,847	574
						290.40	294.80	3.61	4.40	582,742	9,884,847	560
BGH073	582731	9884691	838	280	-60	121.00	123.00	0.72	2.00	582,671	9,884,702	731.9
BGH074	582944	9885130	798	270	-67	278.90	283.93	2.85	5.03	582,810	9,885,137	551.2
						285.49	289.10	1.60	3.61	582,807	9,885,138	546.3
						294.51	297.30	7.14	2.79	582,802	9,885,139	539.1
						299.65	303.34	0.53	3.69	582,799	9,885,139	534.5
BGH075	582731	9884691	838	270	-70	115.40	116.65	6.76	1.25	582,690	9,884,690	729.4
						119.50	120.80	15.22	1.30	582,688	9,884,690	725.7
						125.09	129.80	3.56	4.71	582,684	9,884,690	719.3
						162.55	164.63	8.94	2.08	582,667	9,884,689	687.8
BGH076	582752	9884801	849	300	-40	108.00	109.00	0.84	1.00	582,682	9,884,844	779.6
						118.80	119.45	3.71	0.65	582,675	9,884,848	772.7
						128.15	131.00	2.82	2.85	582,668	9,884,852	765.8
						136.70	137.00	0.97	0.30	582,663	9,884,855	761
BGH077	582944	9885130	798	270	-72	316.84	321.20	2.57	4.36	582,830	9,885,130	501.7
						323.00	328.36	2.56	5.36	582,827	9,885,130	495.8
						329.06	330.13	0.52	1.07	582,825	9,885,130	492.4
						335.25	337.36	9.63	2.11	582,822	9,885,130	486.5
						339.77	340.07	7.07	0.30	582,820	9,885,131	483.4
BGH078	582752	9884801	849	280	-40	102.00	106.00	1.88	4.00	582,674	9,884,816	782.6
						108.00	109.00	0.62	1.00	582,671	9,884,817	779.7
						115.00	117.15	0.80	2.15	582,665	9,884,818	774.8
BGH079	582852	9884845	831	270	-73	290.15	294.40	1.00	4.25	582,765	9,884,842	552.6
						296.30	302.30	9.46	6.00	582,763	9,884,841	546.1
						304.81	305.70	18.75	0.89	582,761	9,884,841	540.5
						312.00	313.00	1.08	1.00	582,758	9,884,841	533.8
						316.90	321.63	4.65	4.73	582,755	9,884,840	527.5
						322.57	328.00	5.41	5.43	582,753	9,884,840	522
						328.95	329.48	1.59	0.53	582,751	9,884,840	518.4
						340.68	341.42	4.29	0.74	582,747	9,884,839	507.6
BGH080	582944	9885130	798	270	-75	339.90	343.60	1.05	3.70	582,853	9,885,141	469.2
						345.00	346.55	4.11	1.55	582,851	9,885,141	465.5
						360.70	361.00	11.95	0.30	582,846	9,885,143	451.5
BGH081a	583022	9885299	776	270	-50	269.00	274.56	1.99	5.56	582,838	9,885,306	578.6
						275.56	275.86	0.64	0.30	582,835	9,885,307	576.0
BGH082a	583013	9885209	752	270	-50	263.83	266.30	3.43	2.47	582,836	9,885,222	556.0
						268.35	269.15	3.32	0.80	582,833	9,885,223	553.5
						276.97	277.27	15.65	0.30	582,827	9,885,224	547.9
BGH083						No significant intercepts						
BGH084	583023	9885299	776	270	-57	278.95	280.90	6.25	1.95	582,857	9,885,307	552.8
						283.06	286.31	1.28	3.25	582,854	9,885,307	549.2
BGH085	583023	9885299	776	270	-65	294.65	298.35	0.83	3.70	582,890	9,885,304	512.9
BGH086	583013	9885208	752	270	-57	275.35	280.78	3.07	5.43	582,847	9,885,214	530.1
						286.05	286.51	18.90	0.46	582,841	9,885,215	524.4
MND001	No significant intercepts											
MND002	No significant intercepts											
MND003	No significant intercepts											

MND004	583392	9886283	682	270	-52	524.76	525.06	0.67	0.30	582,994	9,886,250	347.0
MND005	No significant intercepts											
MND006	No significant intercepts											
MND007	583100	9886210	726	270	-75	402.00	402.45	0.58	0.45	582,987	9,886,211	340.5
MND009	582881	9886200	752	270	-65	96.35	96.75	2.28	0.40	582,842	9,886,200	667.3
MND010	No significant intercepts											
MND011	583103	9886211	726	270	-83	419.26	428.00	21.85	8.74	583,021	9,886,194	312.7
						430.60	438.90	17.52	8.30	583,018	9,886,193	302.0
MND012	582950	9886140	765	270	-60	64.70	65.35	12.20	0.65	582,916	9,886,142	699.8
1. Apparent widths, not true thickness												

[^0]: ${ }^{1}$ Data obtained from International Tin Association Tin Industry Review 2020
 ${ }^{2}$ All intercepts are reported as apparent widths and are not true widths

